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Motivation
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The Basics: The Nature of Dense Matter

The Models

What We Know

What we know:
@ Quarks and Gluons are the fundamental degrees of freedom

@ At low densities, Baryons (Nucleons) are the effective
degrees of freedom

@ At high densities... 77?7 = Hyperons? Quarks? Other?
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The Models

Hadronic Models
A Brief Overview

Quantum HadroDynamics (QHD) Model L m=(m)+ om

@ Simple description of nucleons immersed in mean-field o,
w, and p potentials,

@ Constructed at the baryon level,

@ Issues with large scalar potentials causing negative effective
masses.

Quark-Meson Coupling (QMC) Model
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The Nature of Dense Matter
The Models

Hadronic Models
A Brief Overview

Quantum HadroDynamics (QHD) Model

Mp = Mp + X% = Mp — g,B(0)

Quark-Meson Coupling (QMC) Model

@ Similar final form as QHD, but with self-consistent
response to the o field, despite construction from quark
level,

@ Better predictions for bulk properties of dense matter,

@ No issues with negative effective masses.
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The Nature of Dense
The Models

Hadronic Models
A Brief Overview

Quantum HadroDynamics (QHD) Model

Mp = Mp + X% = Mp — g,B(0)

Quark-Meson Coupling (QMC) Model

* d D
Mg = Mp + X% = M — wigsn{(0o) + §w188 (gon (o))
M

J. D. Carroll QMC dense matter



The Basics: e Nefinme of Demse M

The Models

Hadronic Models
A Brief Overview

In QHD, at Hartree level (mean-field), the scalar self-energy
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Hyperonic QMC

e Be{pn AX" X0 %+ =7 20} = {N,Y}
o lef{e,u}
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The Nature of Dense Matter
The Models

Hyperonic QMC

e Be{pn AX" X0 %+ =7 20} = {N,Y}
o lef{e,u}
o m € {o,w,p}

(B/A), =-1586MeV, |
(ptota,l)po =0.16 fm =3 9goN, GuwN
(asym)po = 32.5 Mev —— gN

Effective masses from Ref. [4]: Guichon et. al. doi:10.1016/j.nuclphysa.2008.10.001 (previously

from Ref. [5]: Rikovska-Stone et. al. doi:10.1016/j.nuclphysa.2007.05.011) derived from the bag

model. sum?mc
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Hyperonic QMC

Equation of State (EOS) is calculated assuming that

Chemical Equilibrium

pi = B pn, — Qzﬂe

sum?mc
smvc‘“‘ 3
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Equation of State (EOS) is calculated assuming that
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The Models

Hyperonic QMC

Equation of State (EOS) is calculated assuming that

Chemical Equilibrium

Wi —\/k2 + (M; +29)2 + 20
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The Models

Hadronic Models
A Brief Overview: Finite Nuclei

Finite Nuclei:
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The Models

Hadronic Models
A Brief Overview: Finite Nuclei

The mean-fields (m) are calculated via the equations of motion;

Equations of Motion
O+m3)o = gnoby,
8MQ/U/ = QNW@E’YI/L/} - miwua

'R, = gom T —mipl.
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The mean-fields (m) are calculated via the equations of motion;

Equations of Motion
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The Nature of Dense Matter
The Models

Hadronic Models
A Brief Overview: Finite Nuclei

The mean-fields (m) are calculated via the equations of motion;

Equations of Motion

(—V2 + mg) o(z) = —gn.Tr[iGu(z,x)],
(-V2+ml)wh(z) = —gnuTr[iv*Gu(z,z)),
(—V2 + mi) pz) = —g,Tr[it"""Gu(z,x)]
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Hadronic Models
A Brief Overview: Finite Nuclei

Consider the solutions of the Dirac equation to be written as
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Hadronic Models

A Brief Overview: Finite Nuclei

Equations of Motion

d? 2d
WUO(T) + ;%00(7”) - mg'o-()(r)

occ

— oo 3 (55 (1Gat = IFalr)P)

E .
Mg

k.
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Equations of Motion
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occ
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A Brief Overview: Finite Nuclei

Equations of Motion

d? 2d
WUO(T) + ;%00(7”) - mg'o-()(r)

occ

— oo 3 (55 (1Gat = IFalr)P)

C%Ga(r) = ;Ga(r) — [€a — gNwwo(T) — Tagppo(r) + M*(r)] =0

E .
Mg

k.
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The Nature of Dense Matter
The Models

Hadronic Models

A Brief Overview: Finite Nuclei

Equations of Motion

d? 2d
WUO(T) + ;%00(7”) - mg'o-()(r)

occ

— oo 3 (55 (1Gat = IFalr)P)

C%Ga(r) = ;Ga(r) — [€a — gNwwo(T) — Tagppo(r) + M*(r)] =0

/0 T (G + [Ea(r)f?) = 1
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Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

o Gu(r), Fu(r)
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The Models

Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

o Gu(r), Fu(r)

@ ao(r), wo(r), po(r)
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We obtain:

o Gu(r), Fu(r)
@ ao(r), wo(r), po(r)
e = pp(r), pa(r), pa(r)
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The Nature of Dense Matter
The Models

Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

o Gu(r), Fu(r)
@ ao(r), wo(r), po(r), Ao(r)
o = pu(r), pu(r), pB(T), pe(r)

J. D. Carroll
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The Models

Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

Go(r), Fu(r)
oo(r), wo(r), po(r), Ao(r)

= pp(r)v pn(r)v pB(T)a pc(r)
€, Masses/splittings

®© 6 6 ¢
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The Models

Hadronic Models
A Brief Overview: Finite Nuclei

We obtain:

©

Go(r), Fu(r)
oo(r), wo(r), po(r), Ao(r)

= pp(r)v pn(r)v pB(T)a pc(r)
€, Masses/splittings

e 6 6 ¢

hypernuclei data

= Compare to experiment!
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Hadronic Matter

Simulations: Mixed-Phase Matter

Hyperonic QMC (2007)
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Hadronic Matter

Simulations: Mixed-Phase Matter

Hyperonic QMC (2008)
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Simulations: Hadronic Matter
Siruiations: Mixed-Phase Matter

Interpretation

The improvement in the 2008 parameterization of M*
1s that the effect of the mean scalar field in-medium on
the familiar one-gluon-exchange hyperfine interaction
(that in free space leads to the N-A and 3-A mass
splittings) is also included self-consistently.

This has the effect of increasing the splitting between
the A and X masses as the density rises and the prime
reason why we find that the ¥ hypernuclei are unbound.

Guichon, Thomas, Tsushima: 2008

J. D. Carroll QMC dense matter



mulations: Hadronic Matter
utations: Mixed-Phase Matter

QMC - Finite Nucle
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Hadronic Matter
Mixed-Phase Matter

Simulations:

QMC - Finite Nuclei

(0]
0.1 I 0.1
0.08 —0.08
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Hadronic Matter

Simulations: Mixed-Phase Matter

QMC - Finite Nuclei
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Hadronic Matter

Simulations:

QMC - Finite Nuclei

Mixed-Phase Matter

Ep (MeV) | Eg (MeV) re (fm) re (fm)

[experiment] [QMC] [experiment] | [QMC]
160 7.976 7.618 2.73 2.702
40Ca 8.551 8.213 3.485 3.415
B(Ca 8.666 8.343 3.484 3.468
208py, 7.867 7.515 5.5 5.42

[ from H. H. Matevosyan: Ph.D. Thesis (2007) ]
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Hadronic Matter

Simulations: Mixed-Phase Matter

Tolman-Oppenheimer-Volkoff

Equations describe a static, spherically symmetric, non-rotating
star, stable against gravitational collapse;
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Hadronic Matter

Simulations: Mixed-Phase Matter

Tolman-Oppenheimer-Volkoff

Equations describe a static, spherically symmetric, non-rotating
star, stable against gravitational collapse;

ar _G(P/02—|—6') (M(r) + 4r37P/c?)

dr r(r—2GM(r)/c?)

M(R) = /OR47T7“2€(7”) dr
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Hadronic Matter

Simulations: Mixed-Phase Matter

Tolman-Oppenheimer-Volkoff

Equations describe a static, spherically symmetric, non-rotating
star, stable against gravitational collapse;

ar _G(P/02—|—5) (M(r) + 4r37P/c?)

dr r(r—2GM(r)/c?)

M(R) = /OR47T7“25(7”) dr
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Hadronic Matter

Simulations: Mixed-Phase Matter

Tolman-Oppenheimer-Volkoff

Equations describe a static, spherically symmetric, non-rotating
star, stable against gravitational collapse;

P _G(P/02—|—5) (M(r) + 4r37P/c?)

dr r(r—2GM(r)/c?)

M(R) = /OR47T7“2€(7”) dr
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Hadronic Matter

Simulations: Mixed-Phase Matter

There are issues with experimental constraints

Determining M experimentally is easy™...
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Hadronic Matter

Simulations: Mixed-Phase Matter

There are issues with experimental constraints

Determining M experimentally is easy*... BUT!
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Hadronic Matter

Simulations: Mixed-Phase Matter

There are issues with experimental constraints

Determining M experimentally is easy*... BUT!
There is very little experimental data for R.
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Hadronic Matter

Simulations: Mixed-Phase Matter

There are issues with experimental constraints

Determining M experimentally is easy™.
There is very little experimental data for R.

These aren't the data you are looking for...

SUBATMI(_
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Hadronic Matter

Simulations: Mixed-Phase Matter

Hyperonic QMC

TOV solutions

B GR causal 7 QuD () T
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Simulations:

What about higher densities?
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Simulations:

Quark Models

A Brief Overview

MIT Bag Model

@ 3 quarks in a ‘bag’,
@ Separated from the QCD vacuum by an energy-density B,

o Constant, current-quark masses

Nambu-Jona—Lasinio (NJL) Model
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A Brief Overview
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@ Constituent-quark masses at low density, current-quark
masses at high density.
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A Brief Overview

MIT Bag Model

my, =5 MeV, mg =7 MeV, mz; =95 MeV

Nambu-Jona—Lasinio (NJL) Model
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Simulations:

Quark Models

A Brief Overview

MIT Bag Model

my, =5 MeV, mg =7 MeV, mz; =95 MeV

Nambu-Jona—Lasinio (NJL) Model

my = Mg+ X =mg— 2G<7ﬁqwq>
8GN, [ O(kp — |E])O(A — kp)m}

(2m)3 k2 + mi2
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Simulations:

Quark Models

A Brief Overview

MIT Bag Model

my, =5 MeV, mg =7 MeV, mz; =95 MeV

Nambu-Jona—Lasinio (NJL) Model

krp=0 : m, =350 MeV, mg = 350 MeV, my = 450 MeV
ke=A : my=5MeV, mg=7MeV, ms =95 MeV
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Simulations:

Phase Transitions

The Gibbs Conditions for a phase transition are;

Gibbs Conditions

o Ty =1Tqg — Thermal Equilibrium

o (ui)a = (ni)g — Chemical Equilibrium
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Simulations:
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The Gibbs Conditions for a phase transition are;

Gibbs Conditions

o Ty =1Tqg — Thermal Equilibrium

o (ui)a = (1i)g — Chemical Equilibrium
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Simulations:

Phase Transitions

The Gibbs Conditions for a phase transition are;

Gibbs Conditions

OTH:TQ

— Thermal Equilibrium
® (i)m = (i)g — Chemical Equilibrium
o Py =1Fg — Mechanical Equilibrium
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Phase Transition
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Simulations:

Phase Transitions
Chemical Potentials

Quark Chemical Potentials related to independent chemical
potentials;

Chemical Equilibrium - quarks

Wi = Bi ptn — Qzﬂe—\/k%i‘i‘MiQ
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Simulations:

Phase Transitions
Chemical Potentials

Quark Chemical Potentials related to independent chemical
potentials;

Chemical Equilibrium - quarks

pi = Bi pn — Qzﬂe—\/k%‘i"i_MZ?

Chemical Equilibrium - quarks
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Simulations:

QMC

Phase Transition
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Mixed-Phase Matter

Mixed-Phase Hyperonic QMC

TOV solutions
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@ The inclusion of DxSB prevents a phase transition to
quark matter, (dependent on HM/QM model)

@ The predictions are very sensitive to changes in model
parameters (need to fix carefully),
@ Good agreement with experimental data is possible,

(but this occurs for most models!)

@ The most likely degrees of freedom at high-density are still
unknown.

@ Outlook:

o Inclusion of Fock terms
@ Inclusion of 7 contributions (Fock)
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Summary

Summary

@ The inclusion of DxSB prevents a phase transition to
quark matter, (dependent on HM/QM model)

@ The predictions are very sensitive to changes in model
parameters (need to fix carefully),

@ Good agreement with experimental data is possible,
(but this occurs for most models!)

@ The most likely degrees of freedom at high-density are still
unknown.

@ Outlook:

o Inclusion of Fock terms

@ Inclusion of 7 contributions (Fock)

o Additional potential terms e A MIC
o Effects of Fock terms in Finite Nuclei calculations %‘E
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Hadronic Models
A Brief Overview: Hartree-Fock

At Hartree—Fock level, the scalar self-energy also includes an
exchange term, and becomes momentum-dependent:
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Hadronic Models
A Brief Overview: Hartree-Fock

At Hartree—Fock level, the scalar self-energy also includes an
exchange term, and becomes momentum-dependent:
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Hadronic Models
A Brief Overview: Hartree-Fock

At Hartree—Fock level, the scalar self-energy also includes an
exchange term, and becomes momentum-dependent:
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Hadronic Models
A Brief Overview: Hartree-Fock

At Hartree—Fock level, the scalar self-energy also includes an
exchange term, and becomes momentum-dependent:
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@ Momentum-dependent X
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A Brief Overview: Hartree-Fock

@ Momentum-dependent ¥ = harder to solve

@ re-definition of u;
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Hadronic Models
A Brief Overview: Hartree-Fock

@ Momentum-dependent ¥ = harder to solve
@ re-definition of u;

@ changes to self-consistencies
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OR... m=(m)+om
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A Brief Overview: Hartree-Fock

@ still momentum-independent (additional energy
contribution)
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Further Reading I

¥ Carroll
Applications of the Octet Baryon Quark-Meson
Coupling Model to Hybrid Stars (PhD Thesis).
arXiv:1001.4318

@ Carroll, Thomas
The Hyperfine, Hyperonic QMC Model - Extension to
Hartree—Fock I: Infinite Nuclear Matter.
in preparation

@ Carroll, Leinweber, Williams, Thomas
Phase Transition from QMC Hyperonic Matter to
Deconfined Quark Matter.
Phys.Rev.C79:045810, 2009 :
[d0i:10.1103 /PhysRevC.79.045810]
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Further Reading II

@ Guichon, Thomas, Tsushima
Binding of hypernuclei in the latest quark-meson coupling
model.
Nucl. Ph\'s A814:66-73, 2008
[d0i:10.1016 /j.nuclphysa.2008.10.001]

@ Rikovska-Stone, Guichon, Matevosyan, Thomas
Cold uniform matter and neutron stars in the
quark-mesons-coupling model.
Nucl.Phys.A792:341-369, 2007
[d0i:10.1016/j.nuclphysa.2007.05.011]
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